Tarea

Avatar del usuario minegrita1972

traslacion de un segmento ejemplos

traslacion de un segmento ejemplos

por Minegrita1972

¿Algo no te quedó claro?¡Pregunta!

Pregunta al Minegrita1972 acerca de esta tarea...

Respuestas

Respuestas

Avatar del usuario AnaCelia
AnaCelia respondió

Consideremos el segmento pq y el vector “a”: queremos determinar el tipo de figura que se obtiene al colocarle la traslación Ta .

a

Para ello, hallemos Ta (p) = p´ y Ta (q) = q´

q q´

Unimos p´ con q´ y obtenemos un segmento p´o´. a

Observemos entonces que la imagen de pq por a

medio de Ta es otro segmento p´q´. Esto lo p p´

podemos denotar así:

 

Ta (pq) = p´q´.

Si consideramos el vector pq, podemo observar que el vector p´q´ es equipolente al vector pq. En efecto, ambos vectores tienen la misma dirección, sentido y modulo. Por lo tanto, el segmento p´q´ tiene la misma longitud que el segmento pq.

 

q q´

 

 

p p´

En resumen:

La traslación de un segmento pq por medio de Ta es un segmento p´q´. Cumpliéndose ademas que:

 

| (pq) = | (p´q´)

 

Además, si consideremos el vector pq, se obtiene el vector p´o´, donde :

 

pq = p´q´ (Equipolentes)

 

Imagen de una semirrecta y de una recta por una traslación.

 

 

Consideremos la semirrecta l, de origen o.

Para hallar la traslación de dicha semirrecta,

simplemente determinamos Ta (o) y Ta (b).

Donde b es un punto cualquiera de la semirrecta.

La semirrecta l´ de origen o´, que pasa por b´, a

es la imagen de l por medio de Ta . O sea; l b b´

l

Ta (l) = l´

o o´

Similarmente, para hallar la imagen de una recta R,

Por medio de Ta , tomamos dos puntos distintos

c Y d, de R. Luego, hallamos Ta (c) = c´ y R´

Ta (d) = d´. a

d d´

La recta R´ que pasa por c´ y d´ es la imagen de R R

por medio de Ta . O sea; c c´

a

Ta (R) = R´

 

 

 

 

 

I

  • Comentarios
  • ¡notificar abuso!
  • Gracias (0)
  • Califica

Comentarios

Escribe tu comentario aquí...