Tarea

Avatar del usuario lshkdbeef

Si un polígono tiene 35 diagonales ¿cual es su numero de vértices?

por Lshkdbeef

¿Algo no te quedó claro?¡Pregunta!

Pregunta al Lshkdbeef acerca de esta tarea...

Respuestas

Respuestas

2
Avatar del usuario jaritzaanchicoque
Jaritzaanchicoque respondió

creo que esto te puede servir 

L formula es:

n(n-3)
-------- = # diagonales.
...2

n = lados

Como no conocemos los lados, lo dejamos asi y reemplazamos las diagonales que si conocemos...
n(n-3)
-------- = 35
...2

Ahora resolvemos y hallamos el valor de n:

n(n-3) = 70

Por la forma.

n x (n-3) = 10 x (10-3)

n = 10

El poligono que tiene 35 diagonales es el de 10 lados.

El poligono pedido es el Decagono(10 lados).

 

  • Comentarios
  • ¡Notificar abuso!
  • Gracias (17)
  • Califica Nota: 4, Votos: 12

Comentarios

Escribe tu comentario aquí...
Avatar del usuario HOLLS
HOLLS respondió

En cualquier polígono el número de vértices es igual al número de lados.

Fórmula D(n) = n(n-3)/2 

35 = (n² - 3n)/2

70 = n² - 3n 

n² - 3n - 70 = 0 

factorizamos (n-10)(n+7) = 0

Raíces n1=10 y n2=-7 

Tomamos el valor positivo 10 

Número de vértices 10 <------------------ decágono 

Se podría haber hallado las raíces aplicando la fórmula de Báscara 

n = [(-b±√(b²-4ac)]/(2a) donde a es el coeficiente de 2º grado, 
b el coeficiente de 1º grado y c el término independiente

y las raíces hubieran sido las msmas. 

Suerte

  • Comentarios
  • ¡Notificar abuso!
  • Gracias (10)
  • Califica

Comentarios

Escribe tu comentario aquí...